نوع مقاله : پژوهشی

نویسندگان

1 دانشجوی دکتری اقتصاد، دانشکده اقتصاد و مدیریت، دانشگاه ارومیه، ارومیه، ایران.

2 استادیار گروه اقتصاد، دانشکده اقتصاد و مدیریت، دانشگاه ارومیه، ارومیه، ایران.

3 استادیار گروه اقتصاد و بانکداری اسلامی، دانشکده اقتصاد، دانشگاه خوارزمی، تهران، ایران.

4 استاد گروه اقتصاد، دانشکده اقتصاد و مدیریت، دانشگاه ارومیه، ارومیه، ایران.

چکیده

مفاهیم مقیاس-زمان، سری­های زمانی با دنباله­های پهن و چولگی و تفکیک دوره­های پژوهش بر اساس شوک­های اقتصادی در بهینه­یابی سبد دارایی از اهمیت ویژه­ایی برخوردار است. لزوم داشتن توزیع نرمال سری بازدهی­ها و عدم امکان فروش استقراضی از ایرادات بنیادی وارد به مدل مارکوویتز است. همچنین وجود خصلت­های چولگی و دم­های پهن در سری بازده دارایی­های مالی اهمیت معرفی چولگی در توزیع خطا مدل MGARGH را نشان می­دهد که نتیجه آن بهبود رهیافت مارکوویتز با استفاده از ماتریس کواریانس مستخرج از مدل­های MGARCH مبتنی بر توزیع چوله چندمتغیره نامتقارن است. ضمنا با استفاده از تحلیل موجک می­توان واریانس و کواریانس­های کاراتری در مقیاس­های زمانی متفاوت محاسبه نمود. از این­رو هدف پژوهش حاضر غلبه بر مشکلات مطروحه در مدل مارکوویتز از طریق کاربرد مدل Bayesian DCC-GARCH مبتنی بر تحلیل موجک و رهیافت هانگ و لیتزنبرگر می­باشد.
داده­های مورد استفاده در این پژوهش شامل بازده قیمت سهام گروه­های منتخبی از بازار سرمایه ایران است که بیش­ترین تاثیر را از تحریم­های اقتصادی طی دوره 24/9/1387 الی 26/3/1398 متحمل شده­اند. دوره زمانی مذکور به دوران قبل از برجام، پسا برجام و خروج آمریکا از برجام تفکیک شده است. همچنین از ماتریس کواریانس حاصل از 2 روش متفاوت (غیرشرطی و شرطی مستخرج از مدل Bayesian DCC-GARCH) در مدل بهینه­یابی سبد دارایی هانگ و لیتزنبرگر در مقیاس­های زمانی 4 گانه استفاده شده است.
نتایج حاکی از  وجود خصلت چندمقیاسه بودن تئوری بهینه­یابی سبد دارایی هانگ و لیتزنبرگر در بازار سرمایه ایران بود. به­گونه­ایی که کارایی سبدهای دارایی در مقیاس­های میان ماهانه و بلندمدت بیش­تر از کارایی این سبدها در مقیاس­های کوتاه­مدت است. ضمن آن­که در تمامی زیربخش­ها سبدهای دارایی که با استفاده از توزیع بیزی حاصل شده­اند دارای کارایی بالاتری نسبت به سایر سبدهایی هستند که از سایر توزیع­های آماری به­دست آمدند.

کلیدواژه‌ها

 
[1]   Abdullah, A. M., Saiti, B., & Masih, M. (2016). The impact of crude oil price on Islamic stock indices of South East Asian countries: Evidence from MGARCH-DCC and wavelet approaches. Borsa Istanbul Review, 16(4), 219-232.‏
[2] Aguilar, O., & West, M. (2000). Bayesian dynamic factor models and portfolio allocation. Journal of Business & Economic Statistics, 18(3), 338-357.‏
[3] Armstrong, J. (2018). The Markowitz Category. SIAM Journal on Financial Mathematics, 9(3), 994-1016.‏
[4]  Avramov, D., & Zhou, G. (2010). Bayesian portfolio analysis. Annu. Rev. Financ. Econ., 2(1), 25-47.‏
[5]  Billio, M., Caporin, M., & Gobbo, M. (2006). Flexible dynamic conditional correlation multivariate garch models for asset allocation. Applied Financial Economics Letters, 2(02), 123-130.‏
[6] Black, F., & Litterman, R. (1992). Global portfolio optimization. Financial analysts journal, 48(5), 28-43.‏
[7]  Black, F. (1972). Capital market equilibrium with restricted borrowing. The Journal of business, 45(3), 444-455.‏
[8]    Bauder, D., Bodnar, T., Parolya, N., & Schmid, W. (2018). Bayesian mean-variance analysis: Optimal portfolio selection under parameter uncertainty. arXiv preprint arXiv:1803.03573.‏
[9]  Bakar, N. A., & Rosbi, S. (2018). Efficient frontier analysis for portfolio investment in Malaysia stock market. A A, 2(2), 2-2.‏
[10] Bahlous, M., & Mohd. Yusof, R. (2014). International diversification among  Islamicinvestments: is there any benefit. Managerial Finance, 40(6), 613-633.‏
[11] Bala, D. A., & Takimoto, T. (2017). Stock markets volatility spillovers during financial crises: A DCC-MGARCH with skewed-t density approach. Borsa Istanbul Review, 17(1), 25-48.‏
[12] Best, M. J., & Grauer, R. R. (1991). On the sensitivity of mean-variance-efficient portfolios to changes in asset means: some analytical and computational results. The review of financial studies, 4(2), 315-342.‏
[13] Bodnar, T., Mazur, S., & Okhrin, Y. (2017). Bayesian estimation of the global minimum variance portfolio. European Journal of Operational Research, 256(1), 292-307.‏
[14] Bauwens, L., & Laurent, S. (2005). A new class of multivariate skew densities, with application to generalized autoregressive conditional heteroscedasticity models. Journal of Business & Economic Statistics, 23(3), 346-354.‏
[15] Dai, Z., & Wen, F. (2018). Some improved sparse and stable portfolio optimization problems. Finance Research Letters, 27, 46-52.‏
[16]  Dajcman, S. (2015). An empirical investigation of the nexus between sovereign bond yields and stock market returns–a multiscale approach. Engineering Economics, 26(2), 108-117.‏
[17]  De Franco, C., Nicolle, J., & Pham, H. (2018). Bayesian learning for the Markowitz portfolio selection problem. arXiv preprint arXiv:1811.06893.‏
[18] Ekstrom, E., & Vaicenavicius, J. (2016). Optimal liquidation of an asset under drift uncertainty. SIAM Journal on Financial Mathematics, 7(1), 357-381.‏
[19]  Elton, E. J., & Gruber, M. J. (1973). Estimating the dependence structure of share prices- implications for portfolio selection. The Journal of Finance, 28(5), 1203-1232.‏
[20]  Fioruci, J. A., Ehlers, R. S., & Andrade Filho, M. G. (2014). Bayesian multivariate GARCH models with dynamic correlations and asymmetric error distributions. Journal of Applied Statistics, 41(2), 320-331.‏
[21]  Fabozzi, F. J., Kolm, P. N., Pachamanova, D. A., & Focardi, S. M. (2007). Robust portfolio optimization and management. John Wiley & Sons.‏
[22]  Frost, P. A., & Savarino, J. E. (1986). An empirical Bayes approach to efficient portfolio selection. Journal of Financial and Quantitative Analysis, 21(3), 293-305.‏
[23]  Gençay, R., Selçuk, F., & Whitcher, B. (2001). Differentiating intraday seasonalities through wavelet multi-scaling. Physica A: Statistical Mechanics and its Applications, 289(3-4), 543-556.‏
[24] Greyserman, A., Jones, D. H., & Strawderman, W. E. (2006). Portfolio selection using hierarchical Bayesian analysis and MCMC methods. Journal of Banking & Finance, 30(2), 669-678.‏
[25] Huang, C. F., & Litzenberger, R. H. (1988). Foundations for Financial Economics, 1988.‏
[26] Hoseini, A., jahangiri, K., Heydari, H., Ghaemi asl, M. (2019). Study of Shock and Volatility Spillovers among Selected Indices of the Tehran Stock Exchange Using Asymmetric BEKK-GARCH Model. Journal of Applied Economics Studies in Iran, 8(29), 123-155. (in Persian)
[27] Hoseini, A., Jahangiri, K., ghaemi asl, M., Heidari, H. (2020). Investigation of the volatility spillover effect and dynamic conditional correlations in Tehran Stock Exchange using wavelet based Bayesian conditional variance heteroscedasticity. Quarterly Journal of Applied Theories of Economics, 7(1), 149-184.
[28] In, F., & Kim, S. (2013). An introduction to wavelet theory in finance: a wavelet multiscale approach. World scientific.‏
[29] Ismail, A., & Pham, H. (2019). Robust Markowitz mean‐variance portfolio selection under ambiguous covariance matrix. Mathematical Finance, 29(1), 174-207.‏
[30] Jackson, M., & Staunton, M. D. (1999). Quadratic programming applications in finance using Excel. Journal of the Operational Research Society, 50(12), 1256-1266.‏
[31] Kroner, K. F., & Ng, V. K. (1998). Modeling asymmetric comovements of asset returns. The review of financial studies, 11(4), 817-844.‏
[32] Karami, S., Rastegar, M. (2018). Estimation of Return and Volatilities Spillover between Different Industries of Tehran Stocks’ Exchange. Financial Engineering and Protfolio Management, 9(35), 323-342. (in Persian)
[33] Ledoit, O., & Wolf, M. (2004). A well-conditioned estimator for large-dimensional covariance matrices. Journal of multivariate analysis, 88(2), 365-411.‏
[34] Laloux, L., Cizeau, P., Potters, M., & Bouchaud, J. P. (2000). Random matrix theory and financial correlations. International Journal of Theoretical and Applied Finance, 3(03), 391-397.‏
[35] Liu, X., An, H., Huang, S., & Wen, S. (2017). The evolution of spillover effects between oil and stock markets across multi-scales using a wavelet-based GARCH–BEKK model. Physica A: Statistical Mechanics and its Applications, 465, 374-383.‏
[36] Merton, R. C. (1980). On estimating the expected return on the market: An exploratory investigation. Journal of financial economics, 8(4), 323-361.‏
[37] Nazlioglu, S., Soytas, U., & Gupta, R. (2015). Oil prices and financial stress: A volatility spillover analysis. Energy Policy, 82, 278-288.‏
[38] Poor Ahamadi, Z., & Najafi, A.B. (2015). Dynamic optimization of the investment portfolio according to the cost of transactions. Financial Engineering and Protfolio Management, 6(22), 127-146. (in Persian)
[39] Pindyck, R. S., & Rotemberg, J. J. (1993). The comovement of stock prices. The quarterly journal of economics, 108(4), 1073-1104.‏
[40] Percival, D. B., & Walden, A. T. (2000). Wavelet methods for time series analysis (Vol. 4). Cambridge university press.‏
[41] Rahim, A. M., & Masih, M. (2016). Portfolio diversification benefits of Islamic investors with their major trading partners: Evidence from Malaysia based on MGARCH-DCC and wavelet approaches. Economic Modelling, 54, 425-438.‏
[42] Rambaud, S. C., Pérez, J. G., Granero, M. Á. S., & Segovia, J. E. T. (2009). Markowitz’s model with Euclidean vector spaces. European Journal of Operational Research, 196(3), 1245-1248.‏
[43] Sharifi, S., Crane, M., Shamaie, A., & Ruskin, H. (2004). Random matrix theory for portfolio optimization: a stability approach. Physica A: Statistical Mechanics and its Applications, 335(3-4), 629-643.‏
[44] Saiti, B., & Noordin, N. H. (2018). Does Islamic equity investment provide diversification benefits to conventional investors? Evidence from the multivariate GARCH analysis. International Journal of Emerging Markets, 13(1), 267-289.‏
[45] Salimi, M., Taqhavi Fard, M., Fallahshams, M., Khajezadeh Dezfuli, H. (2018). Evolutionary 4-Objective Optimization Portfolio Algorithms for fuzzy and non-fuzzy selection. Financial Engineering and Protfolio Management, 9(36), 1-16. (in Persian)
[46] Trichilli, Y., Abbes, M. B., & Masmoudi, A. (2020). Islamic and conventional portfolios optimization under investor sentiment states: Bayesian vs Markowitz portfolio analysis. Research in International Business and Finance, 51, 101071.‏
[47] Tu, J., & Zhou, G. (2010). Incorporating economic objectives into Bayesian priors: Portfolio choice under parameter uncertainty. Journal of Financial and Quantitative Analysis, 45(4), 959-986.‏
[48] Way, R., Lafond, F., Lillo, F., Panchenko, V., & Farmer, J. D. (2019). Wright meets Markowitz: How standard portfolio theory changes when assets are technologies following experience curves. Journal of Economic Dynamics and Control, 101, 211-238.‏
[49] Xiao, Y., & Valdez, E. A. (2015). A Black–Litterman asset allocation model under Elliptical distributions. Quantitative Finance, 15(3), 509-519.‏
[50] Yang, L., Couillet, R., & McKay, M. R. (2014, November). Minimum variance portfolio optimization with robust shrinkage covariance estimation. In 2014 48th Asilomar Conference on Signals, Systems and Computers (pp. 1326-1330). IEEE.‏
[51] Yin, K., Liu, Z., & Jin, X. (2020). Interindustry volatility spillover effects in China’s stock market. Physica A: Statistical Mechanics and its Applications, 539, 122936.‏
[52] Zhang, Y., Li, X., & Guo, S. (2018). Portfolio selection problems with Markowitz’s mean–variance framework: a review of literature. Fuzzy Optimization and Decision Making, 17(2), 125-158.‏
[53] Zhao, Y. F., Chaoliang, Z., & Zongrun, W. (2019). Portfolio Selection Based on Bayesian Theory. Mathematical Problems in Engineering, 2019, 1-11.
CAPTCHA Image